Publication

DELF: Safeguarding deletion correctness in Online Social Networks

USENIX Security Symposium


Abstract

Deletion is a core facet of Online Social Networks (OSNs). For users, deletion is a tool to remove what they have shared and control their data. For OSNs, robust deletion is both an obligation to their users and a risk when developer mistakes inevitably occur. While developers are effective at identifying high-level deletion requirements in products (e.g., users should be able to delete posted photos), they are less effective at mapping high-level requirements into concrete operations (e.g., deleting all relevant items in data stores). Without framework support, developer mistakes lead to violations of users’ privacy, such as retaining data that should be deleted, deleting the wrong data, and exploitable vulnerabilities.

We propose DELF, a deletion framework for modern OSNs. In DELF, developers specify deletion annotations on data type definitions, which the framework maps into asynchronous, reliable and temporarily reversible operations on backing data stores. DELF validates annotations both statically and dynamically, proactively flagging errors and suggesting fixes. We deployed DELF in three distinct OSNs, showing the feasibility of our approach. DELF detected, surfaced, and helped developers correct thousands of omissions and dozens of mistakes, while also enabling timely recovery in tens of incidents where user data was inadvertently deleted.

Related Publications

All Publications

Privacy in Machine Learning (PriML) Workshop at NeurIPS - November 30, 2021

Characterizing and Improving MPC-based Private Inference for Transformer-based Models

Yongqin Wang, Edward Suh, Wenjie Xiong, Benjamin Lefaudeux, Brian Knott, Murali Annavaram, Hsien-Hsin S. Lee

UAI - July 27, 2021

Measuring Data Leakage in Machine-Learning Models with Fisher Information

Awni Hannun, Chuan Guo, Laurens van der Maaten

BMVC - November 22, 2021

Mitigating Reverse Engineering Attacks on Local Feature Descriptors

Deeksha Dangwal, Vincent T. Lee, Hyo Jin Kim, Tianwei Shen, Meghan Cowan, Rajvi Shah, Caroline Trippel, Brandon Reagen, Timothy Sherwood, Vasileios Balntas, Armin Alaghi, Eddy Ilg

POPL - January 16, 2022

Concurrent Incorrectness Separation Logic

Azalea Raad, Josh Berdine, Derek Dreyer, Peter O'Hearn

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookie Policy