Publication

DELF: Safeguarding deletion correctness in Online Social Networks

USENIX Security Symposium


Abstract

Deletion is a core facet of Online Social Networks (OSNs). For users, deletion is a tool to remove what they have shared and control their data. For OSNs, robust deletion is both an obligation to their users and a risk when developer mistakes inevitably occur. While developers are effective at identifying high-level deletion requirements in products (e.g., users should be able to delete posted photos), they are less effective at mapping high-level requirements into concrete operations (e.g., deleting all relevant items in data stores). Without framework support, developer mistakes lead to violations of users’ privacy, such as retaining data that should be deleted, deleting the wrong data, and exploitable vulnerabilities.

We propose DELF, a deletion framework for modern OSNs. In DELF, developers specify deletion annotations on data type definitions, which the framework maps into asynchronous, reliable and temporarily reversible operations on backing data stores. DELF validates annotations both statically and dynamically, proactively flagging errors and suggesting fixes. We deployed DELF in three distinct OSNs, showing the feasibility of our approach. DELF detected, surfaced, and helped developers correct thousands of omissions and dozens of mistakes, while also enabling timely recovery in tens of incidents where user data was inadvertently deleted.

Related Publications

All Publications

IMC - October 21, 2019

Internet Performance from Facebook’s Edge

Brandon Schlinker, Italo Cunha, Yi-Ching Chiu, Srikanth Sundaresan, Ethan Katz-Bassett

CC - March 3, 2021

Lightning BOLT: Powerful, Fast, and Scalable Binary Optimization

Maksim Panchenko, Rafael Auler, Laith Sakka, Guilherme Ottoni

USENIX Security - February 22, 2021

SocialHEISTing: Understanding Stolen Facebook Accounts

Jeremiah Onaolapo, Nektarios Leontiadis, Despoina Magka, Gianluca Stringhini

USENIX FAST - February 23, 2021

Facebook’s Tectonic Filesystem: Efficiency from Exascale

Satadru Pan, Theano Stavrinos, Yunqiao Zhang, Atul Sikaria, Pavel Zakharov, Abhinav Sharma, Shiva Shankar, Mike Shuey, Richard Wareing, Monika Gangapuram, Guanglei Cao, Christian Preseau, Pratap Singh, Kestutis Patiejunas, JR Tipton, Ethan Katz-Bassett, Wyatt Lloyd

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy