Publication

DeepWrinkles: Accurate and Realistic Clothing Modeling

European Conference on Computer Vision (ECCV)


Abstract

We present a novel method to generate accurate and realistic clothing deformation from real data capture. Previous methods for realistic cloth modeling mainly rely on intensive computation of physics-based simulation (with numerous heuristic parameters), while models reconstructed from visual observations typically suffer from lack of geometric details. Here, we propose an original framework consisting of two modules that work jointly to represent global shape deformation as well as surface details with high fidelity. Global shape deformations are recovered from a subspace model learned from 3D data of clothed people in motion, while high frequency details are added to normal maps created using a conditional Generative Adversarial Network whose architecture is designed to enforce realism and temporal consistency. This leads to unprecedented high-quality rendering of clothing deformation sequences, where fine wrinkles from (real) high resolution observations can be recovered. In addition, as the model is learned independently from body shape and pose, the framework is suitable for applications that require retargeting (e.g., body animation). Our experiments show original high quality results with a flexible model. We claim an entirely data-driven approach to realistic cloth wrinkle generation is possible.

Related Publications

All Publications

An Exploration of Embodied Visual Exploration

Santhosh K. Ramakrishnan, Dinesh Jayaraman, Kristen Grauman

arXiv - August 21, 2020

Audio-Visual Waypoints for Navigation

Changan Chen, Sagnik Majumder, Ziad Al-Halah, Ruohan Gao, Santhosh K. Ramakrishnan, Kristen Grauman

arXiv - August 21, 2020

Encoding Physical Constraints in Differentiable Newton-Euler Algorithm

Giovanni Sutanto, Austin S. Wang, Yixin Lin, Mustafa Mukadam, Gaurav S. Sukhatme, Akshara Rai, Franziska Meier

L4DC - June 10, 2020

High-sensitivity multispeckle diffuse correlation spectroscopy

Edbert J. Sie, Hui Chen, E-Fann Saung, Ryan Catoen, Tobias Tiecke, Mark A. Chevillet, Francesco Marsili

Neurophotonics - September 26, 2020

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy