DeepFocus: Learned Image Synthesis for Computational Display

ACM SIGGRAPH (Talks Program)


Reproducing accurate retinal defocus blur is important to correctly drive accommodation and address vergence-accommodation conflict in head-mounted displays (HMDs). Numerous accommodation-supporting HMDs have been proposed. Three architectures have received particular attention: varifocal, multifocal, and light field displays. These designs all extend depth of focus, but rely on computationally expensive rendering and optimization algorithms to reproduce accurate retinal blur (often limiting content complexity and interactive applications). To date, no unified computational framework has been proposed to support driving these emerging HMDs using commodity content. In this paper, we introduce Deep-Focus, a generic, end-to-end trainable convolutional neural network designed to efficiently solve the full range of computational tasks for accommodation-supporting HMDs. This network is demonstrated to accurately synthesize defocus blur, focal stacks, multilayer decompositions, and multiview imagery using commonly available RGB-D images. Leveraging recent advances in GPU hardware and best practices for image synthesis networks, DeepFocus enables real-time, near-correct depictions of retinal blur with a broad set of accommodation-supporting HMDs.

Related Publications

All Publications

COLING - December 8, 2020

Best Practices for Data-Efficient Modeling in NLG: How to Train Production-Ready Neural Models with Less Data

Ankit Arun, Soumya Batra, Vikas Bhardwaj, Ashwini Challa, Pinar Donmez, Peyman Heidari, Hakan Inan, Shashank Jain, Anuj Kumar, Shawn Mei, Karthik Mohan, Michael White

NeurIPS - December 1, 2020

Continuous Surface Embeddings

Natalia Neverova, David Novotny, Vasil Khalidov, Marc Szafraniec, Patrick Labatut, Andrea Vedaldi

NeurIPS - November 25, 2020

Ridge Rider: Finding Diverse Solutions by Following Eigenvectors of the Hessian

Jack Parker-Holder, Luke Metz, Cinjon Resnick, Hengyuan Hu, Adam Lerer, Alistair Letcher, Alex Peysakhovich, Aldo Pacchiano, Jakob Foerster

NeurIPS - December 7, 2020

Efficient Nonmyopic Bayesian Optimization via One-Shot Multi-Step Trees

Shali Jiang, Daniel Jiang, Max Balandat, Brian Karrer, Jacob R. Gardner, Roman Garnett

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy