Publication

Deep Learning Training in Facebook Data Centers: Design of Scale-up and Scale-out Systems

arXiv


Abstract

Large-scale training is important to ensure high performance and accuracy of machine-learning models. At Facebook we use many different models, including computer vision, video and language models. However, in this paper we focus on the deep learning recommendation models (DLRMs), which are responsible for more than 50% of the training demand in our data centers. Recommendation models present unique challenges in training because they exercise not only compute but also memory capacity as well as memory and network bandwidth. As model size and complexity increase, efficiently scaling training becomes a challenge. To address it we design Zion – Facebook’s next-generation large-memory training platform that consists of both CPUs and accelerators. Also, we discuss the design requirements of future scale-out training systems.

Related Publications

All Publications

Robust Market Equilibria with Uncertain Preferences

Riley Murray, Christian Kroer, Alex Peysakhovich, Parikshit Shah

AAAI - February 12, 2020

11-Gbps Broadband Modem-Agnostic Line-of-Sight MIMO Over the Range of 13 km

Yan Yan, Pratheep Bondalapati, Abhishek Tiwari, Chiyun Xia, Andy Cashion, Dawei Zhang, Tobias Tiecke, Qi Tang, Michael Reed, Dudi Shmueli, Hongyu Zhou, Bob Proctor, Joseph Stewart

IEEE GLOBECOM - January 21, 2019

Weak-Attention Suppression For Transformer Based Speech Recognition

Yangyang Shi, Yongqiang Wang, Chunyang Wu, Christian Fuegen, Frank Zhang, Duc Le, Ching-Feng Yeh, Michael L. Seltzer

Interspeech - October 26, 2020

Machine Learning in Compilers: Past, Present, and Future

Hugh Leather, Chris Cummins

FDL - September 14, 2020

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy