Decoding Surface Touch Typing from Hand-Tracking

ACM User Interface Software and Technology Symposium (UIST)


We propose a novel text decoding method that enables touch typing on an uninstrumented flat surface. Rather than relying on physical keyboards or capacitive touch, our method takes as input hand motion of the typist, obtained through hand-tracking, and decodes this motion directly into text. We use a temporal convolutional network to represent a motion model that maps the hand motion, represented as a sequence of hand pose features, into text characters. To enable touch typing without the haptic feedback of a physical keyboard, we had to address more erratic typing motion due to drift of the fingers. Thus, we incorporate a language model as a text prior and use beam search to efficiently combine our motion and language models to decode text from erratic or ambiguous hand motion. We collected a dataset of 20 touch typists and evaluated our model on several baselines, including contact-based text decoding and typing on a physical keyboard. Our proposed method is able to leverage continuous hand pose information to decode text more accurately than contact-based methods and an offline study shows parity (73 WPM, 2.38% UER) with typing on a physical keyboard. Our results show that hand-tracking has the potential to enable rapid text entry in mobile environments.

Related Publications

All Publications

Interspeech - October 12, 2021

LiRA: Learning Visual Speech Representations from Audio through Self-supervision

Pingchuan Ma, Rodrigo Mira, Stavros Petridis, Björn W. Schuller, Maja Pantic

ICML - July 18, 2021

Latency-Aware Neural Architecture Search with Multi-Objective Bayesian Optimization

David Eriksson, Pierce I-Jen Chuang, Samuel Daulton, Peng Xia, Akshat Shrivastava, Arun Babu, Shicong Zhao, Ahmed Aly, Ganesh Venkatesh, Maximilian Balandat

3DV - November 18, 2021

Recovering Real-World Reflectance Properties and Shading From HDR Imagery

Bjoern Haefner, Simon Green, Alan Oursland, Daniel Andersen, Michael Goesele, Daniel Cremers, Richard Newcombe, Thomas Whelan

IEEE Transactions on Image Processing Journal - March 9, 2021

Inspirational Adversarial Image Generation

Baptiste Rozière, Morgane Rivière, Olivier Teytaud, Jérémy Rapin, Yann LeCun, Camille Couprie

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy