Publication

Decoding Surface Touch Typing from Hand-Tracking

ACM User Interface Software and Technology Symposium (UIST)


Abstract

We propose a novel text decoding method that enables touch typing on an uninstrumented flat surface. Rather than relying on physical keyboards or capacitive touch, our method takes as input hand motion of the typist, obtained through hand-tracking, and decodes this motion directly into text. We use a temporal convolutional network to represent a motion model that maps the hand motion, represented as a sequence of hand pose features, into text characters. To enable touch typing without the haptic feedback of a physical keyboard, we had to address more erratic typing motion due to drift of the fingers. Thus, we incorporate a language model as a text prior and use beam search to efficiently combine our motion and language models to decode text from erratic or ambiguous hand motion. We collected a dataset of 20 touch typists and evaluated our model on several baselines, including contact-based text decoding and typing on a physical keyboard. Our proposed method is able to leverage continuous hand pose information to decode text more accurately than contact-based methods and an offline study shows parity (73 WPM, 2.38% UER) with typing on a physical keyboard. Our results show that hand-tracking has the potential to enable rapid text entry in mobile environments.

Related Publications

All Publications

NeurIPS - December 5, 2021

Local Differential Privacy for Regret Minimization in Reinforcement Learning

Evrard Garcelon, Vianney Perchet, Ciara Pike-Burke, Matteo Pirotta

Design Automation Conference (DAC) - December 5, 2021

F-CAD: A Framework to Explore Hardware Accelerators for Codec Avatar Decoding

Xiaofan Zhang, Dawei Wang, Pierce Chuang, Shugao Ma, Deming Chen, Yuecheng Li

NeurIPS - December 5, 2021

Hierarchical Skills for Efficient Exploration

Jonas Gehring, Gabriel Synnaeve, Andreas Krause, Nicolas Usunier

NeurIPS - December 5, 2021

Interpretable agent communication from scratch (with a generic visual processor emerging on the side)

Roberto Dessì, Eugene Kharitonov, Marco Baroni

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookie Policy