Publication

Cultural Diffusion and Trends in Facebook Photographs

The International AAAI Conference on Web and Social Media (ICWSM)


Abstract

Online social media is a social vehicle in which people share various moments of their lives with their friends, such as playing sports, cooking dinner or just taking a selfie for fun, via visual means, i.e., photographs. Our study takes a closer look at the popular visual concepts illustrating various cultural lifestyles from aggregated, de-identified photographs. We perform analysis both at macroscopic and microscopic levels, to gain novel insights about global and local visual trends as well as the dynamics of interpersonal cultural exchange and diffusion among Facebook friends. We processed images by automatically classifying the visual content by a convolutional neural network (CNN). Through various statistical tests, we find that socially tied individuals more likely post images showing similar cultural lifestyles. To further identify the main cause of the observed social correlation, we use the Shuffle test and the Preference-based Matched Estimation (PME) test to distinguish the effects of influence and homophily. The results indicate that the visual content of each user’s photographs are temporally, although not necessarily causally, correlated with the photographs of their friends, which may suggest the effect of influence. Our paper demonstrates that Facebook photographs exhibit diverse cultural lifestyles and preferences and that the social interaction mediated through the visual channel in social media can be an effective mechanism for cultural diffusion.

Related Publications

All Publications

Unsupervised Translation of Programming Languages

Baptiste Roziere, Marie-Anne Lachaux, Lowik Chanussot, Guillaume Lample

NeurIPS - December 1, 2020

Learning Reasoning Strategies in End-to-End Differentiable Proving

Pasquale Minervini, Sebastian Riedel, Pontus Stenetorp, Edward Grefenstette, Tim Rocktäschel

ICML - August 13, 2020

Weights and Methodology Brief for the COVID-19 Symptom Survey by University of Maryland and Carnegie Mellon University, in Partnership with Facebook

Neta Barkay, Curtiss Cobb, Roee Eilat, Tal Galili, Daniel Haimovich, Sarah LaRocca, Katherine Morris, Tal Sarig

arXiv - October 9, 2020

Voice Separation with an Unknown Number of Multiple Speakers

Eliya Nachmani, Yossi Adi, Lior Wolf

ICML - October 1, 2020

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy