Publication

Cross-lingual Transfer Learning for Multilingual Task Oriented Dialog

North American Chapter of the Association for Computational Linguistics (NAACL)


Abstract

One of the first steps in the utterance interpretation pipeline of many task-oriented conversational AI systems is to identify user intents and the corresponding slots. Neural sequence labeling models have achieved very high accuracy on these tasks when trained on large amounts of training data. However, collecting this data is very time-consuming and therefore it is unfeasible to collect large amounts of data for many languages. For this reason, it is desirable to make use of existing data in a high-resource language to train models in low-resource languages. In this paper, we investigate the performance of three different methods for cross-lingual transfer learning, namely (1) translating the training data, (2) using cross-lingual pre-trained embeddings, and (3) a novel method of using a multilingual machine translation encoder as contextual word representations. We find that given several hundred training examples in the the target language, the latter two methods outperform translating the training data. Further, in very low-resource settings, we find that multilingual contextual word representations give better results than using cross-lingual static embeddings. We release the new data set and plan to release our implementation of the NLU models in the near future.

Related Publications

All Publications

A Scalable Approach to Control Diverse Behaviors for Physically Simulated Characters

Jungdam Won, Deepak Gopinath, Jessica Hodgins

ACM SIGGRAPH - July 19, 2020

ARCH: Animatable Reconstruction of Clothed Humans

Zeng Huang, Yuanlu Xu, Christoph Lassner, Hao Li, Tony Tung

CVPR - June 15, 2020

In Defense of Grid Features for Visual Question Answering

Huaizu Jiang, Ishan Misra, Marcus Rohrbach, Erik Learned-Miller, Xinlei Chen

CVPR - June 14, 2020

Hierarchical Scene Coordinate Classification and Regression for Visual Localization

Xiaotian Li, Shuzhe Wang, Yi Zhao, Jakob Verbeek, Juho Kannala

CVPR - June 13, 2020

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy