Publication

Counterfactual Reasoning and Learning Systems: The Example of Computational Advertising

Journal of Machine Learning Research (JMLR)


Abstract

This work shows how to leverage causal inference to understand the behavior of complex learning systems interacting with their environment and predict the consequences of changes to the system. Such predictions allow both humans and algorithms to select the changes that would have improved the system performance. This work is illustrated by experiments on the ad placement system associated with the Bing search engine.

Related Publications

All Publications

Neural Supersampling for Real-time Rendering

Lei Xiao, Salah Nouri, Matt Chapman, Alexander Fix, Douglas Lanman, Anton Kaplanyan

ACM SIGGRAPH - August 17, 2020

Don’t Say That! Making Inconsistent Dialogue Unlikely with Unlikelihood Training

Margaret Li, Stephen Roller, Ilia Kulikov, Sean Welleck, Y-Lan Boureau, Kyunghyun Cho, Jason Weston

ACL - June 22, 2020

Are Natural Language Inference Models IMPPRESsive? Learning IMPlicature and PRESupposition

Paloma Jeretič, Alex Warstadt, Suvrat Bhooshan, Adina Williams

ACL - June 19, 2020

Information-Theoretic Probing for Linguistic Structure

Tiago Pimentel, Josef Valvoda, Rowan Hall Maudslay, Ran Zmigrod, Adina Williams, Ryan Cotterell

ACL - July 6, 2020

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy