Continuous Surface Embeddings

Conference on Neural Information Processing Systems (NeurIPS)


In this work, we focus on the task of learning and representing dense correspondences in deformable object categories. While this problem has been considered before, solutions so far have been rather ad-hoc for specific object types (i.e., humans), often with significant manual work involved. However, scaling the geometry understanding to all objects in nature requires more automated approaches that can also express correspondences between related, but geometrically different objects. To this end, we propose a new, learnable image-based representation of dense correspondences. Our model predicts, for each pixel in a 2D image, an embedding vector of the corresponding vertex in the object mesh, therefore establishing dense correspondences between image pixels and 3D object geometry. We demonstrate that the proposed approach performs on par or better than the state-of-the-art methods for dense pose estimation for humans, while being conceptually simpler. We also collect a new in-the-wild dataset of dense correspondences for animal classes and demonstrate that our framework scales naturally to the new deformable object categories.

Related Publications

All Publications

NAACL - June 6, 2021

Deep Learning on Graphs for Natural Language Processing

Lingfei Wu, Yu Chen, Heng Ji, Yunyao Li

ICASSP - June 6, 2021

On the Predictability of HRTFs from Ear Shapes Using Deep Networks

Yaxuan Zhou, Hao Jiang, Vamsi Krishna Ithapu

CoRL - December 1, 2020

Auxiliary Tasks Speed Up Learning PointGoal Navigation

Joel Ye, Dhruv Batra, Erik Wijmans, Abhishek Das

ACL - July 7, 2020

CraftAssist Instruction Parsing: Semantic Parsing for a Voxel-World Assistant

Kavya Srinet, Yacine Jernite, Jonathan Gray, Arthur Szlam

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy