Compressing Graphs and Indexes with Recursive Graph Bisection



Graph reordering is a powerful technique to increase the locality of the representations of graphs, which can be helpful in several applications. We study how the technique can be used to improve compression of graphs and inverted indexes.

We extend the recent theoretical model of Chierichetti et al. (KDD 2009) for graph compression, and show how it can be employed for compression-friendly reordering of social networks and web graphs and for assigning document identifiers in inverted indexes. We design and implement a novel theoretically sound reordering algorithm that is based on recursive graph bisection.

Our experiments show a significant improvement of the compression rate of graph and indexes over existing heuristics. The new method is relatively simple and allows efficient parallel and distributed implementations, which is demonstrated on graphs with billions of vertices and hundreds of billions of edges.


Related Publications

All Publications

MLSys - March 1, 2020

Predictive Precompute with Recurrent Neural Networks

Hanson Wang, Zehui Wang, Yuanyuan Ma

CODE - November 20, 2020

Privacy-Preserving Randomized Controlled Trials: A Protocol for Industry Scale Deployment (Extended Abstract)

Mahnush Movahedi, Benjamin M. Case, Andrew Knox, Li Li, Yiming Paul Li, Sanjay Saravanan, Shubho Sengupta, Erik Taubeneck

ACM SIGCOMM - October 26, 2020

Zero Downtime Release: Disruption-free Load Balancing of a Multi-Billion User Website

Usama Naseer, Luca Niccolini, Udip Pant, Alan Frindell, Ranjeeth Dasineni, Theophilus A. Benson

FL-ICML - September 1, 2020

ResiliNet: Failure-Resilient Inference in Distributed Neural Networks

Ashkan Yousefpour, Brian Q. Nguyen, Siddartha Devic, Guanhua Wang, Aboudy Kreidieh, Hans Lobel, Alexandre M. Bayen, Jason P. Jue

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy