Publication

Compressing Graphs and Indexes with Recursive Graph Bisection

KDD


Abstract

Graph reordering is a powerful technique to increase the locality of the representations of graphs, which can be helpful in several applications. We study how the technique can be used to improve compression of graphs and inverted indexes.

We extend the recent theoretical model of Chierichetti et al. (KDD 2009) for graph compression, and show how it can be employed for compression-friendly reordering of social networks and web graphs and for assigning document identifiers in inverted indexes. We design and implement a novel theoretically sound reordering algorithm that is based on recursive graph bisection.

Our experiments show a significant improvement of the compression rate of graph and indexes over existing heuristics. The new method is relatively simple and allows efficient parallel and distributed implementations, which is demonstrated on graphs with billions of vertices and hundreds of billions of edges.

compressing-graphs

Related Publications

All Publications

DELF: Safeguarding deletion correctness in Online Social Networks

Katriel Cohn-Gordon, Georgios Damaskinos, Divino Neto, Joshi Cordova, Benoît Reitz, Benjamin Strahs, Daniel Obenshain, Paul Pearce, Ioannis Papagiannis

USENIX Security - August 11, 2020

Eliminating Bugs with Dependent Haskell (Experience Report)

Noam Zilberstein

Haskell Symposium - August 27, 2020

Open Source Evolutionary Structured Optimization

Jeremy Rapin, Pauline Bennet, Emmanuel Centeno, Daniel Haziza, Antoine Moreau, Olivier Teytaud

Evolutionary Computation Software Systems Workshop at ​GECCO - July 9, 2020

Adherence to suicide reporting guidelines by news shared on a social networking platform

Steven A. Sumner, Moira Burke, Farshad Kooti

PNAS - July 6, 2020

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy