Publication

CNNs found to jump around more skillfully than RNNs: Compositional generalization in seq2seq convolutional networks

Annual Meeting of the Association for Computational Linguistics (ACL)


Abstract

Lake and Baroni (2018) introduced the SCAN dataset probing the ability of seq2seq models to capture compositional generalizations, such as inferring the meaning of “jump around” 0-shot from the component words. Recurrent networks (RNNs) were found to completely fail the most challenging generalization cases. We test here a convolutional network (CNN) on these tasks, reporting hugely improved performance with respect to RNNs. Despite the big improvement, the CNN has however not induced systematic rules, suggesting that the difference between compositional and non-compositional behaviour is not clear-cut.

Related Publications

All Publications

COLING - December 8, 2020

Best Practices for Data-Efficient Modeling in NLG: How to Train Production-Ready Neural Models with Less Data

Ankit Arun, Soumya Batra, Vikas Bhardwaj, Ashwini Challa, Pinar Donmez, Peyman Heidari, Hakan Inan, Shashank Jain, Anuj Kumar, Shawn Mei, Karthik Mohan, Michael White

NeurIPS - December 1, 2020

Continuous Surface Embeddings

Natalia Neverova, David Novotny, Vasil Khalidov, Marc Szafraniec, Patrick Labatut, Andrea Vedaldi

NeurIPS - November 25, 2020

Ridge Rider: Finding Diverse Solutions by Following Eigenvectors of the Hessian

Jack Parker-Holder, Luke Metz, Cinjon Resnick, Hengyuan Hu, Adam Lerer, Alistair Letcher, Alex Peysakhovich, Aldo Pacchiano, Jakob Foerster

NeurIPS - December 7, 2020

Efficient Nonmyopic Bayesian Optimization via One-Shot Multi-Step Trees

Shali Jiang, Daniel Jiang, Max Balandat, Brian Karrer, Jacob R. Gardner, Roman Garnett

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy