October 28, 2017

Canopy: An End-to-End Performance Tracing and Analysis System

Symposium on Operating Systems Principles (SOSP)

By: Jonathan Kaldor, Jonathan Mace, Michał Bejda, Edison Gao, Wiktor Kuropatwa, Joe O’Neill, Kian Win Ong, Bill Schaller, Pingjia Shan, Brendan Viscomi, Vinod Venkataraman, Kaushik Veeraraghavan, Yee Jiun Song

Abstract

This paper presents Canopy, Facebook’s end-to-end performance tracing infrastructure. Canopy records causally related performance data across the end-to-end execution path of requests, including from browsers, mobile applications, and backend services. Canopy processes traces in near real-time, derives user-specified features, and outputs to performance datasets that aggregate across billions of requests. Using Canopy, Facebook engineers can query and analyze performance data in real-time. Canopy addresses three challenges we have encountered in scaling performance analysis: supporting the range of execution and performance models used by different components of the Facebook stack; supporting interactive ad-hoc analysis of performance data; and enabling deep customization by users, from sampling traces to extracting and visualizing features. Canopy currently records and processes over 1 billion traces per day. We discuss how Canopy has evolved to apply to a wide range of scenarios, and present case studies of its use in solving various performance challenges.