Publication

Can Recurrent Neural Networks Wrap Time?

International Conference on Learning Representations (ICLR)


Abstract

Successful recurrent models such as long short-term memories (LSTMs) and gated recurrent units (GRUs) use ad hoc gating mechanisms. Empirically these models have been found to improve the learning of medium to long term temporal dependencies and to help with vanishing gradient issues.

We prove that learnable gates in a recurrent model formally provide quasiinvariance to general time transformations in the input data. We recover part of the LSTM architecture from a simple axiomatic approach.

This result leads to a new way of initializing gate biases in LSTMs and GRUs.  Experimentally, this new chrono initialization is shown to greatly improve learning of long term dependencies, with minimal implementation effort.

Related Publications

All Publications

Growing Action Spaces

Gregory Farquhar, Laura Gustafson, Zeming Lin, Shimon Whiteson, Nicolas Usunier, Gabriel Synnaeve

July 14, 2020

Stochastic Hamiltonian Gradient Methods for Smooth Games

Nicolas Loizou, Hugo Berard, Alexia Jolicoeur-Martineau, Pascal Vincent, Simon Lacoste-Julien, Ioannis Mitliagkas

ICML - July 12, 2020

Invariant Causal Prediction for Block MDPs

Amy Zhang, Clare Lyle, Shagun Sodhani, Angelos Filos, Marta Kwiatkowska, Joelle Pineau, Yarin Gal, Doina Precup

ICML - July 14, 2020

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy