Publication

Burst Denoising via Temporally Shifted Wavelet Transforms

European Conference on Computer Vision (ECCV)


Abstract

Mobile photography has made great strides in recent years. However, low light imaging remains a challenge. Long exposures can improve signal-to-noise ratio (SNR) but undesirable motion blur can occur when capturing dynamic scenes. Consequently, imaging pipelines often rely on computational photography to improve SNR by fusing multiple short exposures. Recent deep network-based methods have been shown to generate visually pleasing results by fusing these exposures in a sophisticated manner, but often at a higher computational cost.

We propose an end-to-end trainable burst denoising pipeline which jointly captures high-resolution and high-frequency deep features derived from wavelet transforms. In our model, precious local details are preserved in high-frequency sub-band features to enhance the final perceptual quality, while the low-frequency sub-band features carry structural information for faithful reconstruction and final objective quality. The model is designed to accommodate variable-length burst captures via temporal feature shifting while incurring only marginal computational overhead, and further trained with a realistic noise model for the generalization to real environments. Using these techniques, our method attains state-of-the-art performance on perceptual quality, while being an order of magnitude faster.

Related Publications

All Publications

NeurIPS - December 5, 2021

Interpretable agent communication from scratch (with a generic visual processor emerging on the side)

Roberto Dessì, Eugene Kharitonov, Marco Baroni

Workshop on Online Abuse and Harms (WHOAH) at ACL - November 30, 2021

Findings of the WOAH 5 Shared Task on Fine Grained Hateful Memes Detection

Lambert Mathias, Shaoliang Nie, Bertie Vidgen, Aida Davani, Zeerak Waseem, Douwe Kiela, Vinodkumar Prabhakaran

Journal of Big Data - November 6, 2021

A graphical method of cumulative differences between two subpopulations

Mark Tygert

NeurIPS - December 6, 2021

Parallel Bayesian Optimization of Multiple Noisy Objectives with Expected Hypervolume Improvement

Samuel Daulton, Maximilian Balandat, Eytan Bakshy

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookie Policy