Building High Resolution Maps for Humanitarian Aid and Development with Weakly- and Semi-Supervised Learning

Computer Vision for Global Challenges Workshop at CVPR


Detailed maps help governments and NGOs plan infrastructure development and mobilize relief around the world. Mapping is an open-ended task with a seemingly endless number of potentially useful features to be mapped. In this work, we focus on mapping buildings and roads. We do so with techniques that could easily extend to other features such as land use and land classification. We discuss real-world use cases of our maps by NGOs and humanitarian organizations around the world—from sustainable infrastructure planning to disaster relief. We investigate the pitfalls of existing datasets for building detection and road segmentation and highlight the way that models trained on these datasets—which tend to be highly specific to particular regions—produce worse results in regions of the world not adequately represented in the training set. We explain how we used data from OpenStreetMap (OSM) to train more generalizable models. These models outperform those trained on existing datasets, even in regions in which those models are overfit, and produce these same high-quality results for a diverse range of geographic areas. We utilize a combination of weakly-supervised and semi-supervised learning techniques that allow us to train on the noisy, crowdsourced data in OSM for building detection, which we formulate as a binary classification problem. We then show how weakly supervised learning techniques in conjunction with simple heuristics allowed us to train a semantic segmentation model for road extraction on noisy and never pixel-perfect training data from OSM.

Related Publications

All Publications

MICCAI - October 5, 2020

Active MR k-space Sampling with Reinforcement Learning

Luis Pineda, Sumana Basu, Adriana Romero, Roberto Calandra, Michal Drozdzal

Multimodal Video Analysis Workshop at ECCV - August 23, 2020

Audio-Visual Instance Discrimination

Pedro Morgado, Nuno Vasconcelos, Ishan Misra

ICML - November 3, 2020

Learning Near Optimal Policies with Low Inherent Bellman Error

Andrea Zanette, Alessandro Lazaric, Mykel J. Kochenderfer, Emma Brunskill

AISTATS - November 3, 2020

A single algorithm for both restless and rested rotting bandits

Julien Seznec, Pierre Menard, Alessandro Lazaric, Michal Valko

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy