Publication

Bag of Tricks for Efficient Text Classification

European Chapter of the Association for Computational Linguistics (EACL)


Abstract

This paper explores a simple and efficient baseline for text classification. Our experiments show that our fast text classifier fastText is often on par with deep learning classifiers in terms of accuracy, and many orders of magnitude faster for training and evaluation. We can train fastText on more than one billion words in less than ten minutes using a standard multicore CPU, and classify half a million sentences among 312K classes in less than a minute.

Related Publications

All Publications

NeurIPS - December 7, 2020

Labelling unlabelled videos from scratch with multi-modal self-supervision

Yuki M. Asano, Mandela Patrick, Christian Rupprecht, Andrea Vedaldi

NeurIPS - December 7, 2020

Adversarial Example Games

Avishek Joey Bose, Gauthier Gidel, Hugo Berard, Andre Cianflone, Pascal Vincent, Simon Lacoste-Julien, William L. Hamilton

NeurIPS - December 7, 2020

Learning Search Space Partition for Black-box Optimization using Monte Carlo Tree Search

Linnan Wang, Rodrigo Fonseca, Yuandong Tian

NeurIPS - December 7, 2020

Joint Policy Search for Multi-agent Collaboration with Imperfect Information

Yuandong Tian, Qucheng Gong, Tina Jiang

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy