Publication

Automatically Generating Rhythmic Verse with Neural Networks

Association for Computational Linguistics (ACL 2017)


Abstract

We propose two novel methodologies for the automatic generation of rhythmic poetry in a variety of forms. The first approach uses a neural language model trained on a phonetic encoding to learn an implicit representation of both the form and content of English poetry. This model can effectively learn common poetic devices such as rhyme, rhythm and alliteration. The second approach considers poetry generation as a constraint satisfaction problem where a generative neural language model is tasked with learning a representation of content, and a discriminative weighted finite state machine constrains it on the basis of form. By manipulating the constraints of the latter model, we can generate coherent poetry with arbitrary forms and themes. A large-scale extrinsic evaluation demonstrated that participants consider machine-generated poems to be written by humans 54% of the time. In addition, participants rated a machine-generated poem to be the most human-like amongst all evaluated.

Related Publications

All Publications

ICML - July 18, 2021

Latency-Aware Neural Architecture Search with Multi-Objective Bayesian Optimization

David Eriksson, Pierce I-Jen Chuang, Samuel Daulton, Peng Xia, Akshat Shrivastava, Arun Babu, Shicong Zhao, Ahmed Aly, Ganesh Venkatesh, Maximilian Balandat

ICML - July 18, 2021

Variational Auto-Regressive Gaussian Processes for Continual Learning

Sanyam Kapoor, Theofanis Karaletsos, Thang D. Bui

AKBC - October 3, 2021

Relation Prediction as an Auxiliary Training Objective for Improving Multi-Relational Graph Representations

Yihong Chen, Pasquale Minervini, Sebastian Riedel, Pontus Stenetorp

ICCV - October 11, 2021

Contrast and Classify: Training Robust VQA Models

Yash Kant, Abhinav Moudgil, Dhruv Batra, Devi Parikh, Harsh Agrawal

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy