Publication

Asynchronous Gradient-Push

IEEE Transactions on Automatic Control


Abstract

We consider a multi-agent framework for distributed optimization where each agent has access to a local smooth strongly convex function, and the collective goal is to achieve consensus on the parameters that minimize the sum of the agents’ local functions. We propose an algorithm wherein each agent operates asynchronously and independently of the other agents. When the local functions are strongly-convex with Lipschitz-continuous gradients, we show that the iterates at each agent converge to a neighborhood of the global minimum, where the neighborhood size depends on the degree of asynchrony in the multi-agent network. When the agents work at the same rate, convergence to the global minimizer is achieved. Numerical experiments demonstrate that Asynchronous Gradient-Push can minimize the global objective faster than state-of-the-art synchronous first-order methods, is more robust to failing or stalling agents, and scales better with the network size.

Related Publications

All Publications

ARCH: Animatable Reconstruction of Clothed Humans

Zeng Huang, Yuanlu Xu, Christoph Lassner, Hao Li, Tony Tung

CVPR - June 15, 2020

In Defense of Grid Features for Visual Question Answering

Huaizu Jiang, Ishan Misra, Marcus Rohrbach, Erik Learned-Miller, Xinlei Chen

CVPR - June 14, 2020

Hierarchical Scene Coordinate Classification and Regression for Visual Localization

Xiaotian Li, Shuzhe Wang, Yi Zhao, Jakob Verbeek, Juho Kannala

CVPR - June 13, 2020

SynSin: End-to-end View Synthesis from a Single Image

Olivia Wiles, Georgia Gkioxari, Richard Szeliski, Justin Johnson

CVPR - June 14, 2020

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy