Publication

Asynchronous Gradient-Push

IEEE Transactions on Automatic Control


Abstract

We consider a multi-agent framework for distributed optimization where each agent has access to a local smooth strongly convex function, and the collective goal is to achieve consensus on the parameters that minimize the sum of the agents’ local functions. We propose an algorithm wherein each agent operates asynchronously and independently of the other agents. When the local functions are strongly-convex with Lipschitz-continuous gradients, we show that the iterates at each agent converge to a neighborhood of the global minimum, where the neighborhood size depends on the degree of asynchrony in the multi-agent network. When the agents work at the same rate, convergence to the global minimizer is achieved. Numerical experiments demonstrate that Asynchronous Gradient-Push can minimize the global objective faster than state-of-the-art synchronous first-order methods, is more robust to failing or stalling agents, and scales better with the network size.

Related Publications

All Publications

Spatially Aware Multimodal Transformers for TextVQA

Yash Kant, Dhruv Batra, Peter Anderson, Alexander Schwing, Devi Parikh, Jiasen Lu, Harsh Agrawal

ECCV - August 23, 2020

Perceiving 3D Human-Object Spatial Arrangements from a Single Image in the Wild

Jason Y. Zhang, Sam Pepose, Hanbyul Joo, Deva Ramanan, Jitendra Malik, Angjoo Kanazawa

ECCV - August 23, 2020

ContactPose: A Dataset of Grasps with Object Contact and Hand Pose

Samarth Brahmbhatt, Chengcheng Tang, Christopher D. Twigg, Charles C. Kemp, James Hays

ECCV - August 23, 2020

Learning to Generate Grounded Visual Captions without Localization Supervision

Chih-Yao Ma, Yannis Kalantidis, Ghassan AlRegib, Peter Vajda, Marcus Rohrbach, Zsolt Kira

ECCV - August 24, 2020

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy