Publication

Asynchronous Gradient-Push

IEEE Transactions on Automatic Control


Abstract

We consider a multi-agent framework for distributed optimization where each agent has access to a local smooth strongly convex function, and the collective goal is to achieve consensus on the parameters that minimize the sum of the agents’ local functions. We propose an algorithm wherein each agent operates asynchronously and independently of the other agents. When the local functions are strongly-convex with Lipschitz-continuous gradients, we show that the iterates at each agent converge to a neighborhood of the global minimum, where the neighborhood size depends on the degree of asynchrony in the multi-agent network. When the agents work at the same rate, convergence to the global minimizer is achieved. Numerical experiments demonstrate that Asynchronous Gradient-Push can minimize the global objective faster than state-of-the-art synchronous first-order methods, is more robust to failing or stalling agents, and scales better with the network size.

Related Publications

All Publications

CVPR - June 1, 2021

Semi-supervised Synthesis of High-Resolution Editable Textures for 3D Humans

Bindita Chaudhuri, Nikolaos Sarafianos, Linda Shapiro, Tony Tung

NeurIPS - December 6, 2020

High-Dimensional Contextual Policy Search with Unknown Context Rewards using Bayesian Optimization

Qing Feng, Benjamin Letham, Hongzi Mao, Eytan Bakshy

Innovative Technology at the Interface of Finance and Operations - March 31, 2021

Market Equilibrium Models in Large-Scale Internet Markets

Christian Kroer, Nicolas E. Stier-Moses

Human Interpretability Workshop at ICML - July 17, 2020

Investigating Effects of Saturation in Integrated Gradients

Vivek Miglani, Bilal Alsallakh, Narine Kokhlikyan, Orion Reblitz-Richardson

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy