Applied Methods for Sparse Sampling of Head-related Transfer Functions

International Conference on Acoustics, Speech, and Signal Processing (ICASSP)


Production of high fidelity spatial audio applications requires individual head-related transfer functions (HRTFs). As the acquisition of HRTF is an elaborate process, interest lies in interpolating full length HRTF from sparse samples. Ear-alignment is a recently developed pre-processing technique, shown to reduce an HRTF’s spherical harmonics order, thus permitting sparse sampling over fewer directions. This paper describes the application of two methods for ear-aligned HRTF interpolation by sparse sampling: Orthogonal Matching Pursuit and Principal Component Analysis. These methods consist of generating unique vector sets for HRTF representation. The methods were tested over an HRTF dataset, indicating that interpolation errors using small sampling schemes may be further reduced by up to 5 dB in comparison with spherical harmonics interpolation.

Related Publications

All Publications

IEEE WHC - July 6, 2021

Hasti: Haptic and Audio Synthesis for Texture Interactions

Sonny Chan, Chase Tymms, Nicholas Colonnese

The Journal of the Acoustical Society of America - February 4, 2021

Perceptual implications of different Ambisonics-based methods for binaural reverberation

Isaac Engel, Craig Henry, Sebastià V. Amengual Garí, Philip W. Robinson, Lorenzo Picinali

ICASSP - May 13, 2021

Room Impulse Response Interpolation From A Sparse Set Of Measurements Using A Modal Architecture

Orchisama Das, Paul Calamia, Sebastià V. Amengual Garí

IEEE Transactions on Image Processing - August 6, 2021

Subjective and Objective Quality Assessment of 2D and 3D Foveated Video Compression in Virtual Reality

Yize Jin, Meixu Chen, Todd Goodall, Anjul Patney, Alan C. Bovik

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy