Publication

Anti-efficient encoding in emergent communication

Neural Information Processing Systems (NeurIPS)


Abstract

Despite renewed interest in emergent language simulations with neural networks, little is known about the basic properties of the induced code, and how they compare to human language. One fundamental characteristic of the latter, known as Zipf’s Law of Abbreviation (ZLA), is that more frequent words are efficiently associated to shorter strings. We study whether the same pattern emerges when two neural networks, a “speaker” and a “listener”, are trained to play a signaling game. Surprisingly, we find that networks develop an anti-efficient encoding scheme, in which the most frequent inputs are associated to the longest messages, and messages in general are skewed towards the maximum length threshold. This anti-efficient code appears easier to discriminate for the listener, and, unlike in human communication, the speaker does not impose a contrasting least-effort pressure towards brevity. Indeed, when the cost function includes a penalty for longer messages, the resulting message distribution starts respecting ZLA. Our analysis stresses the importance of studying the basic features of emergent communication in a highly controlled setup, to ensure the latter will not depart too far from human language. Moreover, we present a concrete illustration of how different functional pressures can lead to successful communication codes that lack basic properties of human language, thus highlighting the role such pressures play in the latter.

Related Publications

All Publications

EMNLP - October 1, 2021

Masked Language Modeling and the Distributional Hypothesis: Order Word Matters Pre-training for Little

Koustuv Sinha, Robin Jia, Dieuwke Hupkes, Joelle Pineau, Adina Williams, Douwe Kiela

IROS - September 30, 2021

Learning Navigation Skills for Legged Robots with Learned Robot Embeddings

Joanne Truong, Denis Yarats, Tianyu Li, Franziska Meier, Sonia Chernova, Dhruv Batra, Akshara Rai

IROS - September 27, 2021

Joint Sampling and Trajectory Optimization over Graphs for Online Motion Planning

Kalyan Vasudev Alwala, Mustafa Mukadam

RecSys - September 27, 2021

Transformers4Rec: Bridging the Gap between NLP and Sequential / Session-Based Recommendation

Gabriel De Souza Pereira Moreira, Sara Rabhi, Jeong Min Lee, Ronay Ak, Even Oldridge

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy