Publication

AnoGen: Deep Anomaly Generator

Outlier Detection De-constructed (ODD) Workshop


Abstract

Validating and testing a machine learning model is a critical stage in model development. For time-series anomaly detection, validation and testing is challenging because of the lack of labeled data and the difficulty of generating a realistic time-series with anomalies. Motivated by the continued success of Variational Auto-Encoders (VAE) and Generative Adversarial Networks (GANs) to produce realistic-looking data we provide a platform to generate a realistic time-series with anomalies called AnoGen. Our contribution includes a sampling technique that allows us to sample from the latent z space of a trained variational auto-encoder to deterministically generate a realistic time-series with anomalies.

Related Publications

All Publications

Interspeech - October 12, 2021

LiRA: Learning Visual Speech Representations from Audio through Self-supervision

Pingchuan Ma, Rodrigo Mira, Stavros Petridis, Björn W. Schuller, Maja Pantic

ICML - July 18, 2021

Latency-Aware Neural Architecture Search with Multi-Objective Bayesian Optimization

David Eriksson, Pierce I-Jen Chuang, Samuel Daulton, Peng Xia, Akshat Shrivastava, Arun Babu, Shicong Zhao, Ahmed Aly, Ganesh Venkatesh, Maximilian Balandat

IEEE Transactions on Image Processing Journal - March 9, 2021

Inspirational Adversarial Image Generation

Baptiste Rozière, Morgane Rivière, Olivier Teytaud, Jérémy Rapin, Yann LeCun, Camille Couprie

ICML - July 12, 2020

Lookahead-Bounded Q-Learning

Ibrahim El Shar, Daniel Jiang

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy