And the bit goes down: Revisiting the quantization of neural networks

International Conference on Learning Representations (ICLR)


In this paper, we address the problem of reducing the memory footprint of convolutional network architectures. We introduce a vector quantization method that aims at preserving the quality of the reconstruction of the network outputs rather than its weights. The principle of our approach is that it minimizes the loss reconstruction error for in-domain inputs. Our method only requires a set of unlabelled data at quantization time and allows for efficient inference on CPU by using byte-aligned codebooks to store the compressed weights. We validate our approach by quantizing a high performing ResNet-50 model to a memory size of 5 MB (20× compression factor) while preserving a top-1 accuracy of 76.1% on ImageNet object classification and by compressing a Mask R-CNN with a 26× factor.

Related Publications

All Publications

Workshop on Online Abuse and Harms (WHOAH) at ACL - November 30, 2021

Findings of the WOAH 5 Shared Task on Fine Grained Hateful Memes Detection

Lambert Mathias, Shaoliang Nie, Bertie Vidgen, Aida Davani, Zeerak Waseem, Douwe Kiela, Vinodkumar Prabhakaran

Journal of Big Data - November 6, 2021

A graphical method of cumulative differences between two subpopulations

Mark Tygert

NeurIPS - December 6, 2021

Parallel Bayesian Optimization of Multiple Noisy Objectives with Expected Hypervolume Improvement

Samuel Daulton, Maximilian Balandat, Eytan Bakshy

arXiv - January 29, 2020

fastMRI: An Open Dataset and Benchmarks for Accelerated MRI

Jure Zbontar, Florian Knoll, Anuroop Sriram, Tullie Murrell, Zhengnan Huang, Matthew J. Muckley, Aaron Defazio, Ruben Stern, Patricia Johnson, Mary Bruno, Marc Parente, Krzysztof J. Geras, Joe Katsnelson, Hersh Chandarana, Zizhao Zhang, Michal Drozdzal, Adriana Romero, Michael Rabbat, Pascal Vincent, Nafissa Yakubova, James Pinkerton, Duo Wang, Erich Owens, Larry Zitnick, Michael P. Recht, Daniel K. Sodickson, Yvonne W. Lui

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookie Policy