An Implementation of a Randomized Algorithm for Principal Component Analysis

ArXiv PrePrint


Recent years have witnessed intense development of randomized methods for low-rank approximation. These methods target principal component analysis (PCA) and the calculation of truncated singular value decompositions (SVD). The present paper presents an essentially black-box, fool-proof implementation for Mathworks’ MATLAB, a popular software platform for numerical computation. As illustrated via several tests, the randomized algorithms for low-rank approximation outperform or at least match the classical techniques (such as Lanczos iterations) in basically all respects: accuracy, computational efficiency (both speed and memory usage), ease-of-use, parallelizability, and reliability. However, the classical procedures remain the methods of choice for estimating spectral norms, and are far superior for calculating the least singular values and corresponding singular vectors (or singular subspaces).

Related Publications

All Publications

NeurIPS - December 5, 2021

Interpretable agent communication from scratch (with a generic visual processor emerging on the side)

Roberto Dessì, Eugene Kharitonov, Marco Baroni

Workshop on Online Abuse and Harms (WHOAH) at ACL - November 30, 2021

Findings of the WOAH 5 Shared Task on Fine Grained Hateful Memes Detection

Lambert Mathias, Shaoliang Nie, Bertie Vidgen, Aida Davani, Zeerak Waseem, Douwe Kiela, Vinodkumar Prabhakaran

Journal of Big Data - November 6, 2021

A graphical method of cumulative differences between two subpopulations

Mark Tygert

NeurIPS - December 6, 2021

Parallel Bayesian Optimization of Multiple Noisy Objectives with Expected Hypervolume Improvement

Samuel Daulton, Maximilian Balandat, Eytan Bakshy

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookie Policy