An Empirical Study of Transformer-Based Neural Language Model Adaptation

International Conference on Acoustics, Speech, and Signal Processing (ICASSP)


We explore two adaptation approaches of deep Transformer based neural language models (LMs) for automatic speech recognition. The first approach is a pretrain-finetune framework, where we first pretrain a Transformer LM on a large-scale text corpus from scratch and then adapt it to relatively small target domains via finetuning. The second approach is a mixer of dynamically weighted models that are separately trained on source and target domains, aiming to improve simple linear interpolation with dynamic weighting. We compare the two approaches with three baselines – without adaptation, merging data, and simple interpolation – on Switchboard (SWBD) and Wall Street Journal (WSJ). Experiments show that the mixer model generally performs better than baselines and finetuning. Compared with no adaptation, finetuning and the mixer approach obtain up to relative 11.5% and 14.1% WER reductions on SWBD, respectively. The mixer model also outperforms linear interpolation and merging data. On WSJ, the mixer approach achieves a new state-of-the-art WER result.

Related Publications

All Publications

EMNLP - October 31, 2021

Evaluation Paradigms in Question Answering

Pedro Rodriguez, Jordan Boyd-Graber

ASRU - December 13, 2021

Incorporating Real-world Noisy Speech in Neural-network-based Speech Enhancement Systems

Yangyang Xia, Buye Xu, Anurag Kumar

NAACL - June 6, 2021

Leveraging Slot Descriptions for Zero-Shot Cross-Domain Dialogue State Tracking

Zhaojiang Lin, Bing Liu, Seungwhan Moon, Paul Crook, Zhenpeng Zhou, Zhiguang Wang, Zhou Yu, Andrea Madotto, Eunjoon Cho, Rajen Subba

Uncertainty and Robustness in Deep Learning Workshop at ICML - June 24, 2021

DAIR: Data Augmented Invariant Regularization

Tianjian Huang, Chinnadhurai Sankar, Pooyan Amini, Satwik Kottur, Alborz Geramifard, Meisam Razaviyayn, Ahmad Beirami

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy