An Empirical Study of Transformer-Based Neural Language Model Adaptation

International Conference on Acoustics, Speech, and Signal Processing (ICASSP)


We explore two adaptation approaches of deep Transformer based neural language models (LMs) for automatic speech recognition. The first approach is a pretrain-finetune framework, where we first pretrain a Transformer LM on a large-scale text corpus from scratch and then adapt it to relatively small target domains via finetuning. The second approach is a mixer of dynamically weighted models that are separately trained on source and target domains, aiming to improve simple linear interpolation with dynamic weighting. We compare the two approaches with three baselines – without adaptation, merging data, and simple interpolation – on Switchboard (SWBD) and Wall Street Journal (WSJ). Experiments show that the mixer model generally performs better than baselines and finetuning. Compared with no adaptation, finetuning and the mixer approach obtain up to relative 11.5% and 14.1% WER reductions on SWBD, respectively. The mixer model also outperforms linear interpolation and merging data. On WSJ, the mixer approach achieves a new state-of-the-art WER result.

Related Publications

All Publications

ARCH: Animatable Reconstruction of Clothed Humans

Zeng Huang, Yuanlu Xu, Christoph Lassner, Hao Li, Tony Tung

CVPR - June 15, 2020

In Defense of Grid Features for Visual Question Answering

Huaizu Jiang, Ishan Misra, Marcus Rohrbach, Erik Learned-Miller, Xinlei Chen

CVPR - June 14, 2020

Hierarchical Scene Coordinate Classification and Regression for Visual Localization

Xiaotian Li, Shuzhe Wang, Yi Zhao, Jakob Verbeek, Juho Kannala

CVPR - June 13, 2020

SynSin: End-to-end View Synthesis from a Single Image

Olivia Wiles, Georgia Gkioxari, Richard Szeliski, Justin Johnson

CVPR - June 14, 2020

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy