Aligning Time Series on Incomparable Spaces

International Conference on Artificial Intelligence and Statistics (AISTATS)


Dynamic time warping (DTW) is a useful method for aligning, comparing and combining time series, but it requires them to live in comparable spaces. In this work, we consider a setting in which time series live on different spaces without a sensible ground metric, causing DTW to become ill-defined. To alleviate this, we propose Gromov dynamic time warping (GDTW), a distance between time series on potentially incomparable spaces that avoids the comparability requirement by instead considering intra-relational geometry. We demonstrate its effectiveness at aligning, combining and comparing time series living on incomparable spaces. We further propose a smoothed version of GDTW as a differentiable loss and assess its properties in a variety of settings, including barycentric averaging, generative modeling and imitation learning.

Related Publications

All Publications

SIGGRAPH - August 9, 2021

ManipNet: Neural Manipulation Synthesis with a Hand-Object Spatial Representation

He Zhang, Yuting Ye, Takaaki Shiratori, Taku Komura

SIGGRAPH - August 9, 2021

Control Strategies for Physically Simulated Characters Performing Two-player Competitive Sports

Jungdam Won, Deepak Gopinath, Jessica Hodgins

ICML - July 18, 2021

Align, then memorise: the dynamics of learning with feedback alignment

Maria Refinetti, Stéphane d'Ascoli, Ruben Ohana, Sebastian Goldt

CVPR - June 18, 2021

Improving Panoptic Segmentation at All Scales

Lorenzo Porzi, Samuel Rota Bulò, Peter Kontschieder

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy