Publication

Adversarial Bandits with Knapsacks

Symposium on Foundations of Computer Science (FOCS)


Abstract

We consider Bandits with Knapsacks (henceforth, BwK), a general model for multi-armed bandits under supply/budget constraints. In particular, a bandit algorithm needs to solve a well-known knapsack problem: find an optimal packing of items into a limited-size knapsack. The BwK problem is a common generalization of numerous motivating examples, which range from dynamic pricing to repeated auctions to dynamic ad allocation to network routing and scheduling. While the prior work on BwK focused on the stochastic version, we pioneer the other extreme in which the outcomes can be chosen adversarially. This is a considerably harder problem, compared to both the stochastic version and the “classic” adversarial bandits, in that regret minimization is no longer feasible. Instead, the objective is to minimize the competitive ratio: the ratio of the benchmark reward to algorithm’s reward.

We design an algorithm with competitive ratio O(log T) relative to the best fixed distribution over actions, where T is the time horizon; we also prove a matching lower bound. The key conceptual contribution is a new perspective on the stochastic version of the problem. We suggest a new algorithm for the stochastic version, which builds on the framework of regret minimization in repeated games and admits a substantially simpler analysis compared to prior work. We then analyze this algorithm for the adversarial version, and use it as a subroutine to solve the latter.

Our algorithm is the first “black-box reduction” from bandits to BwK: it takes an arbitrary bandit algorithm and uses it as a subroutine. We use this reduction to derive several extensions.

Related Publications

All Publications

A hierarchical loss and its problems when classifying non-hierarchically

Cinna Wu, Mark Tygert, Yann LeCun

PLOS ONE - December 3, 2019

Neural Supersampling for Real-time Rendering

Lei Xiao, Salah Nouri, Matt Chapman, Alexander Fix, Douglas Lanman, Anton Kaplanyan

ACM SIGGRAPH - August 17, 2020

CamemBERT: a Tasty French Language Model

Louis Martin, Benjamin Muller, Pedro Javier Ortiz Suárez, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah, Benoît Sagot

ACL - June 21, 2020

Don’t Say That! Making Inconsistent Dialogue Unlikely with Unlikelihood Training

Margaret Li, Stephen Roller, Ilia Kulikov, Sean Welleck, Y-Lan Boureau, Kyunghyun Cho, Jason Weston

ACL - June 22, 2020

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy