Addressing Posterior Collapse with Mutual Information for Improved Variational Neural Machine Translation

Association for Computational Linguistics (ACL)


This paper proposes a simple and effective approach to address the problem of posterior collapse in conditional variational autoencoders (CVAEs). It thus improves performance of machine translation models that use noisy or monolingual data, as well as in conventional settings. Extending Transformer and conditional VAEs, our proposed latent variable model measurably prevents posterior collapse by using a modified evidence lower bound (ELBO) objective which promotes mutual information between the latent variable and the target, and guiding the latent variable with an auxiliary bag-of-words prediction task. As a result, the proposed model yields improved translation quality compared to existing variational NMT models on WMT Ro↔En and De↔En. With latent variables being effectively utilized, our model demonstrates improved robustness over non-latent Transformer in handling uncertainty: exploiting noisy source-side monolingual data (up to +3.2 BLEU), and training with weakly aligned web-mined parallel data (up to +4.7 BLEU).

Related Publications

All Publications

SIGGRAPH - August 9, 2021

ManipNet: Neural Manipulation Synthesis with a Hand-Object Spatial Representation

He Zhang, Yuting Ye, Takaaki Shiratori, Taku Komura

SIGGRAPH - August 9, 2021

Control Strategies for Physically Simulated Characters Performing Two-player Competitive Sports

Jungdam Won, Deepak Gopinath, Jessica Hodgins

CVPR - June 20, 2021

Ego-Exo: Transferring Visual Representations from Third-person to First-person Videos

Yanghao Li, Tushar Nagarajan, Bo Xiong, Kristen Grauman

ICML - July 18, 2021

Align, then memorise: the dynamics of learning with feedback alignment

Maria Refinetti, Stéphane d'Ascoli, Ruben Ohana, Sebastian Goldt

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy