Adaptive Multi-Channel Signal Enhancement Based on Multi-Source Contribution Estimation

The European Signal Processing Conference (EUSIPCO)


Automated solutions to multi-channel signal enhancement for improving speech communication in noisy environments has become a popular goal among the research community. Many proposed approaches focus on adapting to speech signals based on their temporal characteristics but these methods are primarily limited to specific types of desired and undesired sound sources. This paper outlines a new method to adapt to desired and undesired signals using their spatial statistics, independent of their temporal characteristics. The method uses a linearly constrained minimum variance (LCMV) beamformer to estimate the relative source contribution of each source in a mixture, which is then used to weight statistical estimates of the spatial characteristics of each source used for final separation. The proposed method allows for instantaneous desired and undesired source selection, a useful ability for the enhancement of conversations. The simulated results show that the method can adapt to the targeted source in noisy mixture signals and that under realistic conditions it is also capable of reaching ideal MVDR performance.

Related Publications

All Publications

EMNLP - November 10, 2021

Cross-Policy Compliance Detection via Question Answering

Marzieh Saeidi, Majid Yazdani, Andreas Vlachos

EMNLP - November 7, 2021

Classification-based Quality Estimation: Small and Efficient Models for Real-world Applications

Shuo Sun, Ahmed El-Kishky, Vishrav Chaudhary, James Cross, Francisco Guzmán, Lucia Specia

EMNLP - October 31, 2021

Evaluation Paradigms in Question Answering

Pedro Rodriguez, Jordan Boyd-Graber

SIGGRAPH - August 2, 2021

Fast Diffraction Pathfinding for Dynamic Sound Propagation

Carl Schissler, Gregor Mückl, Paul Calamia

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy