Publication

Adaptive Input Representations for Neural Language Modeling

International Conference on Learning Representations (ICLR)


Abstract

We introduce adaptive input representations for neural language modeling which extend the adaptive softmax of Grave et al. (2017) to input representations of variable capacity. There are several choices on how to factorize the input and output layers, and whether to model words, characters or sub-word units. We perform a systematic comparison of popular choices for a self-attentional architecture. Our experiments show that models equipped with adaptive embeddings are more than twice as fast to train than the popular character input CNN while having a lower number of parameters. We achieve a new state of the art on the WIKITEXT-103 benchmark of 20.51 perplexity, improving the next best known result by 8.7 perplexity. On the BILLION WORD benchmark, we achieve 23.02 perplexity.

Related Publications

All Publications

A Scalable Approach to Control Diverse Behaviors for Physically Simulated Characters

Jungdam Won, Deepak Gopinath, Jessica Hodgins

ACM SIGGRAPH - July 19, 2020

ARCH: Animatable Reconstruction of Clothed Humans

Zeng Huang, Yuanlu Xu, Christoph Lassner, Hao Li, Tony Tung

CVPR - June 15, 2020

In Defense of Grid Features for Visual Question Answering

Huaizu Jiang, Ishan Misra, Marcus Rohrbach, Erik Learned-Miller, Xinlei Chen

CVPR - June 14, 2020

Hierarchical Scene Coordinate Classification and Regression for Visual Localization

Xiaotian Li, Shuzhe Wang, Yi Zhao, Jakob Verbeek, Juho Kannala

CVPR - June 13, 2020

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy