Publication

Accelerometer: Understanding Acceleration Opportunities for Data Center Overheads at Hyperscale

Architectural Support for Programming Languages and Operating Systems (ASPLOS)


Abstract

At global user population scale, important microservices in warehouse-scale data centers can grow to account for an enormous installed base of servers. With the end of Dennard scaling, successive server generations running these microservices exhibit diminishing performance returns. Hence, it is imperative to understand how important microservices spend their CPU cycles to determine acceleration opportunities across the global server feet. To this end, we first undertake a comprehensive characterization of the top seven microservices that run on the compute-optimized data center feet at Facebook.

Our characterization reveals that microservices spend as few as 18% of CPU cycles executing core application logic (e.g., performing a key-value store); the remaining cycles are spent in common operations that are not core to the application logic (e.g., I/O processing, logging, and compression). Accelerating such common building blocks can greatly improve data center performance. Whereas developing specialized hardware acceleration for each building block might be beneficial, it becomes risky at scale if these accelerators do not yield expected gains due to performance bounds precipitated by offload-induced overheads. To identify such performance bounds early in the hardware design phase, we develop an analytical model, Accelerometer, for hardware acceleration that projects realistic speedup in microservices. We validate Accelerometer’s utility in production using three retrospective case studies and demonstrate how it estimates the real speedup with ≤ 3.7% error. We then use Accelerometer to project gains from accelerating important common building blocks identified by our characterization.

Related Publications

All Publications

arXiv - July 8, 2021

First-Generation Inference Accelerator Deployment at Facebook

Michael Anderson, Benny Chen, Stephen Chen, Summer Deng, Jordan Fix, Michael Gschwind, Aravind Kalaiah, Changkyu Kim, Jaewon Lee, Jason Liang, Haixin Liu, Yinghai Lu, Jack Montgomery, Arun Moorthy, Satish Nadathur, Sam Naghshineh, Avinash Nayak, Jongsoo Park, Chris Petersen, Martin Schatz, Narayanan Sundaram, Bangsheng Tang, Peter Tang, Amy Yang, Jiecao Yu, Hector Yuen, Ying Zhang, Aravind Anbudurai, Vandana Balan, Harsha Bojja, Joe Boyd, Matthew Breitbach, Claudio Caldato, Anna Calvo, Garret Catron, Sneh Chandwani, Panos Christeas, Brad Cottel, Brian Coutinho, Arun Dalli, Abhishek Dhanotia, Oniel Duncan, Roman Dzhabarov, Simon Elmir, Chunli Fu, Wenyin Fu, Michael Fulthorp, Adi Gangidi, Nick Gibson, Sean Gordon, Beatriz Padilla Hernandez, Daniel Ho, Yu-Cheng Huang, Olof Johansson, Shishir Juluri, Shobhit Kanaujia, Manali Kesarkar, Jonathan Killinger, Ben Kim, Rohan Kulkarni, Meghan Lele, Huayu Li, Huamin Li, Yueming Li, Cynthia Liu, Jerry Liu, Bert Maher, Chandra Mallipedi, Seema Mangla, Kiran Kumar Matam, Jubin Mehta, Shobhit Mehta, Christopher Mitchell, Bharath Muthiah, Nitin Nagarkatte, Ashwin Narasimha, Bernard Nguyen, Thiara Ortiz, Soumya Padmanabha, Deng Pan, Ashwin Poojary, Ye (Charlotte) Qi, Olivier Raginel, Dwarak Rajagopal, Tristan Rice, Craig Ross, Nadav Rotem, Scott Russ, Kushal Shah, Baohua Shan, Hao Shen, Pavan Shetty, Krish Skandakumaran, Kutta Srinivasan, Roshan Sumbaly, Michael Tauberg, Mor Tzur, Hao Wang, Man Wang, Ben Wei, Alex Xiao, Chenyu Xu, Martin Yang, Kai Zhang, Ruoxi Zhang, Ming Zhao, Whitney Zhao, Rui Zhu, Lin Qiao, Misha Smelyanskiy, Bill Jia, Vijay Rao

IEEE Access Journal (IEEE Access) - August 1, 2021

Coded Machine Unlearning

Nasser Aldaghri, Hessam Mahdavifar, Ahmad Beirami

FAST - February 23, 2021

Evolution of Development Priorities in Key-value Stores Serving Large-scale Applications: The RocksDB Experience

Siying Dong, Andrew Kryczka, Yanqin Jin, Michael Stumm

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy