April 13, 2016

Abstractive Summarization with Attentive RNN – NAACL 2016

NAACL 2016

By: Sumit Chopra, Michael Auli, Alexander M. Rush

Abstract

Abstractive sentence summarization generates a shorter version of a given sentence while attempting to preserve its meaning. We introduce a conditional recurrent neural network (RNN) which generates a summary of an input sentence. The conditioning is provided by a novel convolutional attention-based encoder which ensures that the decoder focuses on the appropriate input words at each step of generation. Our model relies only on learned features and is easy to train in an end-to-end fashion on large data sets. Our experiments show that the model significantly outperforms the recently proposed state-of-the-art method on the Gigaword corpus while performing competitively on the DUC-2004 shared task.