Publication

A Universal Music Translation Network

International Conference on Learning Representations (ICLR)


Abstract

We present a method for translating music across musical instruments and styles. This method is based on unsupervised training of a multi-domain wavenet autoencoder, with a shared encoder and a domain-independent latent space that is trained end-to-end on waveforms. Employing a diverse training dataset and large net capacity, the single encoder allows us to translate also from musical domains that were not seen during training. We evaluate our method on a dataset collected from professional musicians, and achieve convincing translations. We also study the properties of the obtained translation and demonstrate translating even from a whistle, potentially enabling the creation of instrumental music by untrained humans.

Related Publications

All Publications

NeurIPS - December 6, 2020

High-Dimensional Contextual Policy Search with Unknown Context Rewards using Bayesian Optimization

Qing Feng, Benjamin Letham, Hongzi Mao, Eytan Bakshy

Innovative Technology at the Interface of Finance and Operations - March 31, 2021

Market Equilibrium Models in Large-Scale Internet Markets

Christian Kroer, Nicolas E. Stier-Moses

Human Interpretability Workshop at ICML - July 17, 2020

Investigating Effects of Saturation in Integrated Gradients

Vivek Miglani, Bilal Alsallakh, Narine Kokhlikyan, Orion Reblitz-Richardson

ICASSP - June 6, 2021

Multi-Channel Speech Enhancement Using Graph Neural Networks

Panagiotis Tzirakis, Anurag Kumar, Jacob Donley

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy