Publication

A Roadmap Towards Machine Intelligence

ArXiv PrePrint


Abstract

The development of intelligent machines is one of the biggest unsolved challenges in computer science. In this paper, we propose some fundamental properties these machines should have, focusing in particular on communication and learning. We discuss a simple environment that could be used to incrementally teach a machine the basics of natural-language-based communication, as a prerequisite to more complex interaction with human users. We also present some conjectures on the sort of algorithms the machine should support in order to profitably learn from the environment.

Related Publications

All Publications

A hierarchical loss and its problems when classifying non-hierarchically

Cinna Wu, Mark Tygert, Yann LeCun

PLOS ONE - December 3, 2019

Neural Supersampling for Real-time Rendering

Lei Xiao, Salah Nouri, Matt Chapman, Alexander Fix, Douglas Lanman, Anton Kaplanyan

ACM SIGGRAPH - August 17, 2020

CamemBERT: a Tasty French Language Model

Louis Martin, Benjamin Muller, Pedro Javier Ortiz Suárez, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah, Benoît Sagot

ACL - June 21, 2020

Don’t Say That! Making Inconsistent Dialogue Unlikely with Unlikelihood Training

Margaret Li, Stephen Roller, Ilia Kulikov, Sean Welleck, Y-Lan Boureau, Kyunghyun Cho, Jason Weston

ACL - June 22, 2020

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy