A Lyapunov-based Approach to Safe Reinforcement Learning

Neural Information Processing Systems (NeurIPS)


In many real-world reinforcement learning (RL) problems, besides optimizing the main objective function, an agent must concurrently avoid violating a number of constraints. In particular, besides optimizing performance, it is crucial to guarantee the safety of an agent during training as well as deployment (e.g., a robot should avoid taking actions – exploratory or not – which irrevocably harm its hardware). To incorporate safety in RL, we derive algorithms under the framework of constrained Markov decision processes (CMDPs), an extension of the standard Markov decision processes (MDPs) augmented with constraints on expected cumulative costs. Our approach hinges on a novel Lyapunov method. We define and present a method for constructing Lyapunov functions, which provide an effective way to guarantee the global safety of a behavior policy during training via a set of local linear constraints. Leveraging these theoretical underpinnings, we show how to use the Lyapunov approach to systematically transform dynamic programming (DP) and RL algorithms into their safe counterparts. To illustrate their effectiveness, we evaluate these algorithms in several CMDP planning and decision-making tasks on a safety benchmark domain. Our results show that our proposed method significantly outperforms existing baselines in balancing constraint satisfaction and performance.

Related Publications

All Publications

NeurIPS - December 6, 2021

Parallel Bayesian Optimization of Multiple Noisy Objectives with Expected Hypervolume Improvement

Samuel Daulton, Maximilian Balandat, Eytan Bakshy

UAI - July 27, 2021

Measuring Data Leakage in Machine-Learning Models with Fisher Information

Awni Hannun, Chuan Guo, Laurens van der Maaten

arXiv - January 29, 2020

fastMRI: An Open Dataset and Benchmarks for Accelerated MRI

Jure Zbontar, Florian Knoll, Anuroop Sriram, Tullie Murrell, Zhengnan Huang, Matthew J. Muckley, Aaron Defazio, Ruben Stern, Patricia Johnson, Mary Bruno, Marc Parente, Krzysztof J. Geras, Joe Katsnelson, Hersh Chandarana, Zizhao Zhang, Michal Drozdzal, Adriana Romero, Michael Rabbat, Pascal Vincent, Nafissa Yakubova, James Pinkerton, Duo Wang, Erich Owens, Larry Zitnick, Michael P. Recht, Daniel K. Sodickson, Yvonne W. Lui

arXiv - April 20, 2021

MBRL-Lib: A Modular Library for Model-based Reinforcement Learning

Luis Pineda, Brandon Amos, Amy Zhang, Nathan O. Lambert, Roberto Calandra

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookie Policy