Publication

A Large-Scale Study of Flash Memory Failures in the Field

ACM Sigmetrics 2015


Abstract

Servers use flash memory based solid state drives (SSDs) as a high-performance alternative to hard disk drives to store persistent data. Unfortunately, recent increases in flash density have also brought about decreases in chip-level reliability. In a data center environment, flash-based SSD failures can lead to downtime and, in the worst case, data loss. As a result, it is important to understand flash memory reliability characteristics over flash lifetime in a realistic production data center environment running modern applications and system software.

This paper presents the first large-scale study of flash-based SSD reliability in the field. We analyze data collected across a majority of flash-based solid state drives at Facebook data centers over nearly four years and many millions of operational hours in order to understand failure properties and trends of flash-based SSDs. Our study considers a variety of SSD characteristics, including: the amount of data written to and read from flash chips; how data is mapped within the SSD address space; the amount of data copied, erased, and discarded by the flash controller; and flash board temperature and bus power.

Based on our field analysis of how flash memory errors manifest when running modern workloads on modern SSDs, this paper is the first to make several major observations: (1) SSD failure rates do not increase monotonically with flash chip wear; instead they go through several distinct periods corresponding to how failures emerge and are subsequently detected, (2) the effects of read disturbance errors are not prevalent in the field, (3) sparse logical data layout across an SSD’s physical address space (e.g., non-contiguous data), as measured by the amount of metadata required to track logical address translations stored in an SSD-internal DRAM buffer, can greatly affect SSD failure rate, (4) higher temperatures lead to higher failure rates, but techniques that throttle SSD operation appear to greatly reduce the negative reliability impact of higher temperatures, and (5) data written by the operating system to flash-based SSDs does not always accurately indicate the amount of wear induced on flash cells due to optimizations in the SSD controller and buffering employed in the system software. We hope that the findings of this first large-scale flash memory reliability study can inspire others to develop other publicly-available analyses and novel flash reliability solutions.

Related Publications

All Publications

arXiv - July 8, 2021

First-Generation Inference Accelerator Deployment at Facebook

Michael Anderson, Benny Chen, Stephen Chen, Summer Deng, Jordan Fix, Michael Gschwind, Aravind Kalaiah, Changkyu Kim, Jaewon Lee, Jason Liang, Haixin Liu, Yinghai Lu, Jack Montgomery, Arun Moorthy, Satish Nadathur, Sam Naghshineh, Avinash Nayak, Jongsoo Park, Chris Petersen, Martin Schatz, Narayanan Sundaram, Bangsheng Tang, Peter Tang, Amy Yang, Jiecao Yu, Hector Yuen, Ying Zhang, Aravind Anbudurai, Vandana Balan, Harsha Bojja, Joe Boyd, Matthew Breitbach, Claudio Caldato, Anna Calvo, Garret Catron, Sneh Chandwani, Panos Christeas, Brad Cottel, Brian Coutinho, Arun Dalli, Abhishek Dhanotia, Oniel Duncan, Roman Dzhabarov, Simon Elmir, Chunli Fu, Wenyin Fu, Michael Fulthorp, Adi Gangidi, Nick Gibson, Sean Gordon, Beatriz Padilla Hernandez, Daniel Ho, Yu-Cheng Huang, Olof Johansson, Shishir Juluri, Shobhit Kanaujia, Manali Kesarkar, Jonathan Killinger, Ben Kim, Rohan Kulkarni, Meghan Lele, Huayu Li, Huamin Li, Yueming Li, Cynthia Liu, Jerry Liu, Bert Maher, Chandra Mallipedi, Seema Mangla, Kiran Kumar Matam, Jubin Mehta, Shobhit Mehta, Christopher Mitchell, Bharath Muthiah, Nitin Nagarkatte, Ashwin Narasimha, Bernard Nguyen, Thiara Ortiz, Soumya Padmanabha, Deng Pan, Ashwin Poojary, Ye (Charlotte) Qi, Olivier Raginel, Dwarak Rajagopal, Tristan Rice, Craig Ross, Nadav Rotem, Scott Russ, Kushal Shah, Baohua Shan, Hao Shen, Pavan Shetty, Krish Skandakumaran, Kutta Srinivasan, Roshan Sumbaly, Michael Tauberg, Mor Tzur, Hao Wang, Man Wang, Ben Wei, Alex Xiao, Chenyu Xu, Martin Yang, Kai Zhang, Ruoxi Zhang, Ming Zhao, Whitney Zhao, Rui Zhu, Lin Qiao, Misha Smelyanskiy, Bill Jia, Vijay Rao

IEEE Access Journal (IEEE Access) - August 1, 2021

Coded Machine Unlearning

Nasser Aldaghri, Hessam Mahdavifar, Ahmad Beirami

FAST - February 23, 2021

Evolution of Development Priorities in Key-value Stores Serving Large-scale Applications: The RocksDB Experience

Siying Dong, Andrew Kryczka, Yanqin Jin, Michael Stumm

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy