Publication

A Convolutional Encoder Model for Neural Machine Translation

Association for Computational Linguistics 2017 (ACL 2017)


Abstract

The prevalent approach to neural machine translation relies on bi-directional LSTMs to encode the source sentence. We present a faster and simpler architecture based on a succession of convolutional layers. This allows to encode the source sentence simultaneously compared to recurrent networks for which computation is constrained by temporal dependencies. On WMT’16 EnglishRomanian translation we achieve competitive accuracy to the state-of-the-art and on WMT’15 English-German we outperform several recently published results. Our models obtain almost the same accuracy as a very deep LSTM setup on WMT’14 English-French translation. We speed up CPU decoding by more than two times at the same or higher accuracy as a strong bidirectional LSTM.

Related Publications

All Publications

Facebook AI Research Sequence-to-Sequence Toolkit

No Authors Listed

April 13, 2017

Growing Action Spaces

Gregory Farquhar, Laura Gustafson, Zeming Lin, Shimon Whiteson, Nicolas Usunier, Gabriel Synnaeve

July 14, 2020

Stochastic Hamiltonian Gradient Methods for Smooth Games

Nicolas Loizou, Hugo Berard, Alexia Jolicoeur-Martineau, Pascal Vincent, Simon Lacoste-Julien, Ioannis Mitliagkas

ICML - July 12, 2020

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy