A Closer Look at Spatiotemporal Convolutions for Action Recognition

Computer Vision and Pattern Recognition (CVPR)


In this paper we discuss several forms of spatiotemporal convolutions for video analysis and study their effects on action recognition. Our motivation stems from the observation that 2D CNNs applied to individual frames of the video have remained solid performers in action recognition. In this work we empirically demonstrate the accuracy advantages of 3D CNNs over 2D CNNs within the framework of residual learning. Furthermore, we show that factorizing the 3D convolutional filters into separate spatial and temporal components yields significantly gains in accuracy. Our empirical study leads to the design of a new spatiotemporal convolutional block “R(2+1)D” which produces CNNs that achieve results comparable or superior to the state-of-the-art on Sports-1M, Kinetics, UCF101, and HMDB51.

Related Publications

All Publications

Uncertainty and Robustness in Deep Learning Workshop at ICML - June 24, 2021

DAIR: Data Augmented Invariant Regularization

Tianjian Huang, Chinnadhurai Sankar, Pooyan Amini, Satwik Kottur, Alborz Geramifard, Meisam Razaviyayn, Ahmad Beirami

CVPR - June 21, 2021

img2pose: Face Alignment and Detection via 6DoF, Face Pose Estimation

Vítor Albiero, Xingyu Chen, Xi Yin, Guan Pang, Tal Hassner

AutoML Workshop at NeurIPS - July 18, 2021

Neural Fixed-Point Acceleration for Convex Optimization

Shobha Venkataraman, Brandon Amos

Federated Learning for User Privacy and Data Confidentiality Workshop At ICML - July 24, 2021

Federated Learning with Buffered Asynchronous Aggregation

John Nguyen, Kshitiz Malik, Hongyuan Zhan, Ashkan Yousefpour, Michael Rabbat, Mani Malek, Dzmitry Huba

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy