Publication

3D human pose estimation in video with temporal convolutions and semi-supervised training

Conference Computer Vision and Pattern Recognition (CVPR)


Abstract

In this work, we demonstrate that 3D poses in video can be effectively estimated with a fully convolutional model based on dilated temporal convolutions over 2D keypoints. We also introduce back-projection, a simple and effective semi-supervised training method that leverages unlabeled video data. We start with predicted 2D keypoints for unlabeled video, then estimate 3D poses and finally back-project to the input 2D keypoints. In the supervised setting, our fully-convolutional model outperforms the previous best result from the literature by 6 mm mean per-joint position error on Human3.6M, corresponding to an error reduction of 11%, and the model also shows significant improvements on HumanEva-I. Moreover, experiments with back-projection show that it comfortably outperforms previous state-of-the-art results in semisupervised settings where labeled data is scarce. Code and models are available at https://github.com/facebookresearch/VideoPose3D.

Related Publications

All Publications

LEEP: A New Measure to Evaluate Transferability of Learned Representations

Cuong V. Nguyen, Tal Hassner, Matthias Seeger, Cedric Archambeau

ICML - July 13, 2020

Fully Convolutional Mesh Autoencoder using Efficient Spatially Varying Kernels

Yi Zhou, Chenglei Wu, Zimo Li, Chen Cao, Yuting Ye, Jason Saragih, Hao Li, Yaser Sheikh

arXiv - July 1, 2020

Passthrough+: Real-time Stereoscopic View Synthesis for Mobile Mixed Reality

Gaurav Chaurasia, Arthur Nieuwoudt, Alexandru-Eugen Ichim, Richard Szeliski, Alexander Sorkine-Hornung

I3D - April 14, 2020

Lightweight Multi-View 3D Pose Estimation through Camera-Disentangled Representation

Edoardo Remelli, Shangchen Han, Sina Honari, Pascal Fua, Robert Wang

CVPR - June 16, 2020

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy