360◦ Video Stabilization



We present a hybrid 3D-2D algorithm for stabilizing 360◦ video using a deformable rotation motion model. Our algorithm uses 3D analysis to estimate the rotation between key frames that are appropriately spaced such that the right amount of motion has occurred to make that operation reliable. For the remaining frames, it uses 2D optimization to maximize the visual smoothness of feature point trajectories. A new low-dimensional flexible deformed rotation motion model enables handling small translational jitter, parallax, lens deformation, and rolling shutter wobble. Our 3D-2D architecture achieves better robustness, speed, and smoothing ability than either pure 2D or 3D methods can provide. Stabilizing a video with our method takes less time than playing it at normal speed. The results are sufficiently smooth to be played back at high speed-up factors; for this purpose we present a simple 360◦ hyperlapse algorithm that remaps the video frame time stamps to balance the apparent camera velocity.

Related Publications

All Publications

CVPR - June 21, 2021

img2pose: Face Alignment and Detection via 6DoF, Face Pose Estimation

Vítor Albiero, Xingyu Chen, Xi Yin, Guan Pang, Tal Hassner

ISMAR - July 29, 2021

Instant Visual Odometry Initialization for Mobile AR

Alejo Concha, Michael Burri, Jesus Briales, Christian Forster, Luc Oth

ACM MM - October 20, 2021

EVRNet: Efficient Video Restoration on Edge Devices

Sachin Mehta, Amit Kumar, Fitsum Reda, Varun Nasery, Vikram Mulukutla, Rakesh Ranjan, Vikas Chandra

ICCV - October 11, 2021

Egocentric Pose Estimation from Human Vision Span

Hao Jiang, Vamsi Krishna Ithapu

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy